Bridging OER Electrocatalysis and Tumor Therapy: Utilizing Piezoelectric‐Hole‐Induced OER Electrocatalysis for Direct Oxygen Generation to Address Hypoxia

Author:

Li Shuyao1,Yang Meiqi1,Wang Yan1,Tian Boshi1,Wu Linzhi2,Yang Dan1,Gai Shili1,Yang Piaoping1ORCID

Affiliation:

1. Key Laboratory of Superlight Materials and Surface Technology Ministry of Education College of Materials Science and Chemical Engineering Harbin Engineering University Harbin 150001 P. R. China

2. College of Aerospace and Civil Engineering Harbin Engineering University Harbin 150001 P. R. China

Abstract

AbstractIn addressing the challenge of hypoxia within the tumor microenvironment (TME), a significant obstacle to effective cancer therapy, this research introduces a pioneering nanozyme engineered to utilize water and oxygen as reactants. Utilizing ultrasonic piezoelectricity, this nanozyme converts these substrates into oxygen (O2) and reactive oxygen species, thereby amplifying oxidative stress without relying on endogenous H2O2. This approach involves the strategic engineering of porous ZnSnOv:Mn nanosheets (named MZSO NSs), which are distinguished by oxygen‐rich vacancies and enhanced piezoelectric properties. This breakthrough represents the initial attempt to merge catalytic activities akin to catalase (CAT) with the electrocatalytic oxygen evolution reaction (OER), confirmed through both enzymatic reactions and electrochemical voltammetric analysis. The predominant mechanism of ultrasound‐augmented oxygen generation in MZSO is identified as piezoelectric hole‐induced OER. Supporting theoretical analyses clarify the synergistic impact of oxygen vacancies and Mn doping on the dynamics of carriers and the OER process, leading to a notable increase in catalytic efficiency. These findings highlight the potential of piezoelectric‐enhanced OER electrocatalysts to alleviate hypoxia in the TME, providing novel insights into the development of piezoelectric acoustic sensitizers for the treatment of cancer.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Fundamental Research Funds for the Central Universities

China Postdoctoral Science Foundation

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3