A Laminated Strategy Enabled Sustainable Tactile Array with Ultra‐Stable Sensory Augmentation

Author:

Hao Sanwei12ORCID,Wang Wenqi1,Ma Chao1,Li Xin1,Liu Xidie1,Wang Yicong1,Xue Zhimin1,Xu Feng1,Yang Jun1ORCID

Affiliation:

1. Beijing Key Laboratory of Lignocellulosic Chemistry College of Materials Science and Technology Beijing Forestry University Beijing 100083 China

2. School of Materials Science and Engineering Shandong University of Technology Zibo 255000 China

Abstract

AbstractThe sustainable tactile electronics demonstrates huge potential in mimicking the functionality of human skin and satisfies with an eco‐friendly concept. However, on the premise of successfully introducing natural materials, such electronics are still not sufficient for improving the fatigue threshold in high‐frequency sensing scenarios. Here an eco‐ and user‐friendly cellulose integrated tactile array (CITA) is introduced that relies on laminated hierarchical architecture (LAHA) for alleviating the notorious structural vulnerability toward long‐term haptic evaluation. By cross‐validation with conventional bulky configuration, finite element simulation unveils that the LAHA leverages compact laminated adjacent layer for dramatically facilitating in‐plane stress distribution for diminishing the interfacial stress concentration, thus affords prolonged and reliable sensory augmentation. The CITA wireless monitoring system offers impeccable real‐time spatiotemporal haptic patterns on multi‐user interfaces and can substantially promote a record‐high durability (150000 cycles), showcasing low interfacial contact impedance (1.78 ± 0.4 ohm, 1 kHz), remarkably channel uniformity (97.2%), unparalleled sensitivity (12944 kPa−1), and sensing‐robustness against perturbations (e.g., humidity, temperature, and bending). It is envisioned that the proposed CITA system will open up new avenues for sustainable tactile electronics in continuous health surveillance.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3