Affiliation:
1. Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
2. Beijing Advanced Innovation Center for Intelligent Robots and Systems Institute of Engineering Medicine Beijing Institute of Technology Beijing 100081 P. R. China
3. School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 P. R. China
Abstract
AbstractThe functional lithiophilic−lithiophobic gradient solid electrolyte interphase (SEI) between Li‐metal anode and solid‐state polymer electrolytes may be effective in addressing the long‐standing issue of side reactions and Li‐dendrite growth during repeated deposition or dissolution in solid‐state polymer‐based high‐energy‐density batteries. Herein, a reliable lithiophilic–lithiophobic gradient SEI (G‐SEI) of LiAg‐LiF/Li3N is in situ formed by AgTFSI, used as an additive for polyethylene oxide‐based electrolyte (PEO‐Ag). The upper layer consists of a lithiophobic LiF/Li3N‐rich layer, wherein LiF possesses a high interfacial energy, while Li3N enables fast Li+ diffusion, which synergistically facilitates the uniform deposition of Li+. Lithiophilic Li–Ag alloy can effectively reduce the nucleation overpotential and promote more planar growth of lithium. Furthermore, such G‐SEI possesses a high mechanical modulus, mitigating the penetration of dendrites through the SEI and thereby preventing the continuous degradation of the PEO‐based electrolyte. As a result, an over three times improvement in the lifespan of Li | PEO‐Ag | LFP cell is achieved, demonstrating an 81.4% capacity retention rate after 500 cycles at 1C, as compared to Li | PEO | LFP cell with common SEI. Thus, the developments of the lithiophilic‐lithiophobic gradient SEI provide a substantial path toward high‐performance solid‐state lithium batteries.
Funder
National Natural Science Foundation of China
Hainan Provincial Postdoctoral Science Foundation
Special Fund Project for Science and Technology Innovation Strategy of Guangdong Province
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献