A Lithiophilic–Lithiophobic Gradient Solid Electrolyte Interface Toward a Highly Stable Solid‐State Polymer Lithium Metal Batteries

Author:

Zhai Pengfei1,Ahmad Niaz1ORCID,Qu Shuangquan2,Feng Ligang3,Yang Wen1ORCID

Affiliation:

1. Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China

2. Beijing Advanced Innovation Center for Intelligent Robots and Systems Institute of Engineering Medicine Beijing Institute of Technology Beijing 100081 P. R. China

3. School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 P. R. China

Abstract

AbstractThe functional lithiophilic−lithiophobic gradient solid electrolyte interphase (SEI) between Li‐metal anode and solid‐state polymer electrolytes may be effective in addressing the long‐standing issue of side reactions and Li‐dendrite growth during repeated deposition or dissolution in solid‐state polymer‐based high‐energy‐density batteries. Herein, a reliable lithiophilic–lithiophobic gradient SEI (G‐SEI) of LiAg‐LiF/Li3N is in situ formed by AgTFSI, used as an additive for polyethylene oxide‐based electrolyte (PEO‐Ag). The upper layer consists of a lithiophobic LiF/Li3N‐rich layer, wherein LiF possesses a high interfacial energy, while Li3N enables fast Li+ diffusion, which synergistically facilitates the uniform deposition of Li+. Lithiophilic Li–Ag alloy can effectively reduce the nucleation overpotential and promote more planar growth of lithium. Furthermore, such G‐SEI possesses a high mechanical modulus, mitigating the penetration of dendrites through the SEI and thereby preventing the continuous degradation of the PEO‐based electrolyte. As a result, an over three times improvement in the lifespan of Li | PEO‐Ag | LFP cell is achieved, demonstrating an 81.4% capacity retention rate after 500 cycles at 1C, as compared to Li | PEO | LFP cell with common SEI. Thus, the developments of the lithiophilic‐lithiophobic gradient SEI provide a substantial path toward high‐performance solid‐state lithium batteries.

Funder

National Natural Science Foundation of China

Hainan Provincial Postdoctoral Science Foundation

Special Fund Project for Science and Technology Innovation Strategy of Guangdong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3