Enhancement of Interfacial Properties by Indoloquinoxaline‐Based Small Molecules for Highly Efficient Wide‐Bandgap Perovskite Solar Cells

Author:

Yong Jihye12ORCID,Lee Yu Kyung3,Park Hansol12,Muthu Senthilkumar12,Shin Juhwan12,Whang Dong Ryeol4,Kim Bong‐Gi5,Chang Dong Wook3,Park Hui Joon12ORCID

Affiliation:

1. Department of Organic and Nano Engineering Hanyang University Seoul 04763 Republic of Korea

2. Human‐Tech Convergence Program Hanyang University Seoul 04763 Republic of Korea

3. Department of Industrial Chemistry Pukyung National University Busan 48513 Republic of Korea

4. Division of Advanced Materials Hannam University Daejeon 34054 Republic of Korea

5. Department of Organic and Nano System Engineering Konkuk University Seoul 05029 Republic of Korea

Abstract

AbstractInterfacial engineering in organic–inorganic hybrid perovskite solar cells (PSCs) has attracted significant attention, aiming to achieve high‐performing and highly stable devices. Here, newly designed organic small molecules based on quinoxaline and triphenylamine for inverted type wide‐bandgap PSCs are introduced, with the objective of enhancing the interfacial properties between perovskite and NiOx hole transport layer (HTL). The incorporation of an organic interlayer effectively reduces the energy level offset between the HTL and wide‐bandgap perovskite, while passivating defects within the perovskite layer. It leads to improved charge extraction and minimized non‐radiative recombination at the interface. Furthermore, the enhanced interfacial characteristics and hydrophobicity contribute to the improvement of perovskite film quality, resulting in larger grain size and higher crystallinity. As a result, the power conversion efficiency (PCE) of the PSC is enhanced from 18.9% to 20.1% with the incorporation of the IQTPAFlu interlayer, accompanied by an increase in Voc to ≈1.3 V, achieving a significantly low Voc deficit of 0.46 V. And the IQTPAFlu‐based devices demonstrate stable and consistent performance over 500 h, with ≈91% of their initial PCE retained. The highly stable wide‐bandgap PSCs, characterized by high Voc and PCEs, hold great promise as potential candidates for tandem solar cells.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3