Thermosensitive Plasmonic Color Enabled by Sodium Metasurface

Author:

Zhao Yinghao1,Yang Yuhan2,Ji Changyin1,Liang Qinghua1,Fu Hanyu2,Liu Xing1,Zhou Lin2,Li Jiafang1,Wang Yang1ORCID

Affiliation:

1. Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education) Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems and School of Physics Beijing Institute of Technology Beijing 100081 China

2. National Laboratory of Solid State Microstructures College of Engineering and Applied Sciences School of Physics Key Laboratory of Intelligent Optical Sensing and Integration and Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 China

Abstract

AbstractActive plasmonic nanostructures have attracted tremendous interest in nanophotonics and metamaterials owing to the dynamically switchable capabilities of plasmonic resonances. In this study, tunable hybrid plasmon resonances (HPR) of sodium metasurfaces through heat‐initiated structural transformation is experimentally demonstrated. A HPR is formed by coupling surface plasmon polaritons (SPP) and gap plasmon resonances (GPR), whose resonant wavelengths are highly sensitive to gaseous nanogaps. By carefully manipulating the thermo‐assisted spin‐coating process and post‐thermal treatment, tuning of the HPR is achieved because of the phase transition between the antidome and nanodome structural profiles of liquid sodium inside the patterned fused silica substrates. Furthermore, the figure of merit of the heat initiated variable structure‐spectrum is demonstrated that is highly dependent on the size of the substrate patterns, based on which temperature‐sensitive plasmonic color and “invisible ink” of sodium metasurfaces are demonstrated. These findings can lead to new solutions for manipulating low‐cost and high‐performance active plasmonic devices.

Funder

National Key Research and Development Program of China

Natural Science Foundation of Beijing Municipality

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3