Affiliation:
1. Key Laboratory for Soft Chemistry and Functional Materials Ministry of Education Nanjing University of Science and Technology Nanjing 210094 China
2. Department of Chemical and Materials Engineering University of Alberta Edmonton AB T6G 1H9 Canada
3. College of Physics Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
4. Canadian Light Source Saskatoon SK S7N 2V3 Canada
Abstract
AbstractThe irreversibility issuesof metallic zinc (Zn) anode of low Coulombic efficiency, persistent parasitic reactions, and severe dendrite growth remain a fundamental, century‐old challenge hindering the practical applications in rechargeable aqueous batteries. Herein, a promising atomically gradient solid electrolyte interphase (SEI) strategy is demmonstrated, in which the bottom sublayer of atomic Cu dispersed carbon nitride tightly anchors the whole SEI layer onto Zn anode, whereas the top carbon nitride uniformizes Zn2+ flux, facilitates Zn2+ diffusion, and detaches the reactive water molecules. Theoretical simulations and structural analysis confirm the strong interactions of this SEI with Zn2+ ions that launch an ion‐sieving effect to enable single Zn2+ ion conduction, and the porous and stiff feature accommodates the deposition stress and volume change under plating/stripping, ensuring consistent conformal contact on the substrate meanwhile suppressing the generation of Zn protuberant tips. Representative X‐ray computed tomography study demonstrates the failure mode of the Zn anodes under aqueous electrolyte and verifies the homogeneous Zn electrodeposition behavior and spatially compact metallic structure in the presence of this hydrophobic‐zincophilic SEI. Consequently, dendrite‐free Zn plating/stripping at ≈99.2% Coulombic efficiency for 200 cycles, steady charge–discharge for 2000 h, and impressive full cell cyclability are achieved.
Funder
National Natural Science Foundation of China
Natural Sciences and Engineering Research Council of Canada
Alberta Innovates
Canada Foundation for Innovation
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献