Taming Zn Electrochemistry with Carbon Nitride: Atomically Gradient Interphase for Highly Reversible Aqueous Zn Batteries

Author:

Zhang Wenyao12,Yao Qiushi3,Wang Chao1,Feng Renfei4,Chen Ning4,Zhu Junwu1ORCID,Li Zhi2ORCID

Affiliation:

1. Key Laboratory for Soft Chemistry and Functional Materials Ministry of Education Nanjing University of Science and Technology Nanjing 210094 China

2. Department of Chemical and Materials Engineering University of Alberta Edmonton AB T6G 1H9 Canada

3. College of Physics Nanjing University of Aeronautics and Astronautics Nanjing 211106 China

4. Canadian Light Source Saskatoon SK S7N 2V3 Canada

Abstract

AbstractThe irreversibility issuesof metallic zinc (Zn) anode of low Coulombic efficiency, persistent parasitic reactions, and severe dendrite growth remain a fundamental, century‐old challenge hindering the practical applications in rechargeable aqueous batteries. Herein, a promising atomically gradient solid electrolyte interphase (SEI) strategy is demmonstrated, in which the bottom sublayer of atomic Cu dispersed carbon nitride tightly anchors the whole SEI layer onto Zn anode, whereas the top carbon nitride uniformizes Zn2+ flux, facilitates Zn2+ diffusion, and detaches the reactive water molecules. Theoretical simulations and structural analysis confirm the strong interactions of this SEI with Zn2+ ions that launch an ion‐sieving effect to enable single Zn2+ ion conduction, and the porous and stiff feature accommodates the deposition stress and volume change under plating/stripping, ensuring consistent conformal contact on the substrate meanwhile suppressing the generation of Zn protuberant tips. Representative X‐ray computed tomography study demonstrates the failure mode of the Zn anodes under aqueous electrolyte and verifies the homogeneous Zn electrodeposition behavior and spatially compact metallic structure in the presence of this hydrophobic‐zincophilic SEI. Consequently, dendrite‐free Zn plating/stripping at ≈99.2% Coulombic efficiency for 200 cycles, steady charge–discharge for 2000 h, and impressive full cell cyclability are achieved.

Funder

National Natural Science Foundation of China

Natural Sciences and Engineering Research Council of Canada

Alberta Innovates

Canada Foundation for Innovation

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3