Enhanced Ferromagnetism in Atomically Thin Oxides Achieved by Interfacial Reconstruction

Author:

Yi Di1ORCID,Tang Aihua1,Kane Margaret M.2,Xu Liubin3,Liu Jingchun1,Cheng Zhiying4,Klewe Christoph5,N'Diaye Alpha T.5,Shafer Padraic5,Yu Pu6,Yu Rong14,Xu Haixuan3,Lin Yuanhua1,Nan Cewen1,Suzuki Yuri27

Affiliation:

1. State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering Tsinghua University Beijing 100084 China

2. Department of Materials Science and Engineering Stanford University Stanford CA 94305 USA

3. Department of Materials Science and Engineering University of Tennessee Knoxville TN 37996 USA

4. MOE Key Laboratory of Advanced Materials School of Materials Science and Engineering Tsinghua University Beijing 100084 China

5. Advanced Light Source Lawrence Berkeley National Laboratory Berkeley CA 94720 USA

6. State Key Laboratory of Low Dimensional Quantum Physics Department of Physics Tsinghua University Beijing 100084 China

7. Department of Applied Physics Stanford University Stanford CA 94305 USA

Abstract

AbstractDiscoveries of ferromagnetic materials with ultrathin thickness are of great importance for both fundamental science and technological applications. Transition metal oxides (TMOs) provide promising candidates in the context of next‐generation spintronics, despite the severe decay of ferromagnetism as the thickness reduces to the nanometer regime. Here, an efficient strategy to eliminate the magnetic dead layer in atomically thin oxides is presented, by using the epitaxial interface of 3d and 5d oxide monolayers that reconciles both strong exchange interaction and large uniaxial magnetic anisotropy. Combining multiple experimental methods, a ferromagnetic transition in an ultrathin oxide heterostructure comprised of only one La0.2Sr0.8MnO3 monolayer sandwiched by SrIrO3 monolayer (total thickness of three unit‐cells) is unambiguously demonstrated. Remarkably, a largely enhanced saturation magnetization (2 µB Mn−1) and Curie temperature (80 K) are observed for the single manganite monolayer, as compared to previously reported ferromagnetic monolayer oxides. The results demonstrate a general strategy for creating robust ferromagnetism in ultrathin TMOs, potentially enabling novel oxide spin‐orbitronic devices.

Funder

Natural Science Foundation of Beijing Municipality

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3