Sulfur‐Rich Polymers Coatings

Author:

King‐Poole Cody1,Thérien‐Aubin Héloïse1ORCID

Affiliation:

1. Department of Chemistry Memorial University of Newfoundland St. John's NL Canada

Abstract

AbstractAdvancements in the synthesis of sulfur‐rich materials are driving progress across diverse fields owing to the rich and tunable functionalities of those materials. These materials are typically valued for their electrochemical behaviors, high refractive indices, heavy metal affinity, and ability to form dynamic covalent bonding. As a result, their applications span various industries including electronics, catalysis, lithium‐sulfur batteries, water reclamation, and optoelectronics. Moreover, elemental sulfur, a byproduct of the petroleum industry, is produced abundantly, necessitating the exploration of novel valorization routes for polymers made from this feedstock. The unique combination of properties of sulfur‐rich polymers also makes them an ideal platform for the development of high‐performance functional coatings, offering durability and tailored functionalities for protective coatings, thus enhancing materials lifespan and performances in a variety of environmental conditions. The presence of dynamic covalent bonds in many sulfur‐rich polymers enables the creation of self‐healing coatings, while sulfur itself or the comonomers can contribute to antimicrobial, antifouling, and corrosion‐resistant properties. Furthermore, sulfur‐rich polymers have the potential to be used in the design of icephobic and superhydrophobic coatings. This underscores the versatility of sulfur‐rich polymers as a platform for the creation of advanced coatings with superior properties.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3