Contact‐Electro‐Catalysis for Organic Pollutants Degradation Based on 2D Fluorinated Graphite

Author:

Yin Fang1,Liu Jin‐Hua1,Zhang Yang1,Liu Meng‐Nan1,Wang Lu‐Yao1,Yu Zi‐Chen1,Yang Wen‐Hua1,Zhang Jun1,Long Yun‐Ze1ORCID

Affiliation:

1. Collaborative Innovation Center for Nanomaterials & Devices College of Physics Qingdao University Qingdao 266071 P. R. China

Abstract

AbstractContact‐electro‐catalysis (CEC) has garnered significant interest as a viable method for degrading organic pollutants. Nevertheless, the current array of catalyst materials for CEC is restricted, and their effectiveness is frequently undermined by environmental influences, resulting in diminished catalytic performance. Herein, a new fluorinated graphite [(CFx)n] catalyst is presented that notably expands the repertoire of available catalyst materials for CEC. It is demonstrated that the (CFx)n catalyst maintains high catalytic activity under nonilluminated conditions and exhibits excellent stability under high‐temperature conditions, surpassing traditional organic polymer CEC catalysts. Furthermore, DFT (density functional theory) calculations reveal the key factors affecting catalytic performance. An in‐depth analysis of the influence of temperature on CEC efficiency is also conducted. The cyclic tests verify that the (CFx)n powders sustain a catalytic efficacy of over 95% and proficiently decompose various organic pollutants, underscoring its promise for large‐scale treatment systems targeting organic pollutants. These results carry significant implications for the progression of CEC technology in environmental remediation efforts and offer valuable direction for the enhancement of catalyst efficiency and stability.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3