A Rolled Organic Thermoelectric Generator with High Thermocouple Density

Author:

Pataki Nathan James12,Zahabi Najmeh3,Li Qifan3,Rossi Pietro12,Cassinelli Marco1,Butti Matteo1,Massetti Matteo3,Fabiano Simone3,Zozoulenko Igor3,Caironi Mario1ORCID

Affiliation:

1. Center for Nano Science and Technology Istituto Italiano di Tecnologia Via Raffaele Rubattino, 81 Milan 20134 Italy

2. Department of Physics Politecnico di Milano Piazza Leonardo da Vinci 32 Milano 20133 Italy

3. Laboratory of Organic Electronics Department of Science and Technology Linköping University Norrköping 60174 Sweden

Abstract

AbstractThe surge in the number of distributed microelectronics and sensors requires versatile, scalable, and affordable power sources. Heat‐harvesting organic thermoelectric generators (TEGs) are regarded as potential key components of the future energy landscape. Recent advances in the performance of organic thermoelectric materials have made practical applications of organic TEGs more feasible than ever before, yet the challenges of designing and fabricating organic TEGs suitable for real scenarios are scarcely addressed. Specifically, small sensors and wearables demand for micro‐thermoelectric generators (µTEGs) with high power density architectures and small form factors, while typical demonstrations of organic TEGs are characterized by < 10 thermocouples (TCs) per cm2. This work presents a rolled, organic µTEG architecture combining large‐area, solution‐based deposition techniques, such as inkjet and spray‐coating, and an ultrathin parylene substrate to achieve a thermocouple density of 1842 TCs cm−2. Such demonstrative µTEG reaches a thermoelectric conversion performance of 0.15 µW cm−2 at ΔT = 50 K. Such power output is well in line with finite element method simulations, which highlight the benefit of the architecture and show that remarkable power densities, in the mW cm−2 range at ΔT = 10 K, are realistically achievable with geometrical improvements and already ongoing advancements in organic thermoelectric inks.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

Wiley

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3