Affiliation:
1. National Key Laboratory of Green Pesticide State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China
2. School of Chemistry and Chemical Engineering Qiannan Normal University for Nationalities Duyun 558000 P. R. China
3. School of Public Health Center of Toxicity Testing Guizhou Medical University Guiyang 550025 P. R. China
Abstract
AbstractControllable and on‐demand delivery of supramolecular systems have received considerable attention in modern agricultural management, especially for managing intractable plant diseases. Here, an intelligent photoresponsive pesticide delivery system is reported based on β‐cyclodextrin (β‐CD) and azobenzene, which overcomes the resistance of phytopathogens caused by the irrational use of conventional pesticides. Antibacterial bioassays illustrated that designed azobenzene derivative 3a possesses the most efficient bioactivity with EC50 values of 0.52–25.31 µg mL−1 toward three typical phytopathogens. Moreover, the assembly of the supramolecular binary complex 3a@β‐CD is successfully elucidated and displays exceptional inhibitory activity on biofilm formation. Of note, this supramolecular binary complex significantly improves the water solubility, foliar surface wettability, and shows marked light‐responsive properties. In vivo anti‐Xoo assays reveal that 3a@β‐CD has excellent control efficiency (protective activity: 51.22%, curative activity: 48.37%) against rice bacterial blight pathogens, and their control efficiency can be elevated to values of 55.84% (protective activity) and 52.05% (curative activity) by UV–vis exposure. In addition, the 3a@β‐CD are non‐toxic toward various non‐target organisms. This study therefore offers new insights into the potential of host‐guest complexes as a feasible pesticide discovery strategy characterized by a safe, biocompatible, light‐responsive release, and antibiofilm properties for overcoming intractable plant bacterial diseases.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Guizhou University
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献