Toward Flexible Embodied Energy: Scale‐Inspired Overlapping Lithium‐Ion Batteries with High‐Energy‐Density and Variable Stiffness

Author:

Bao Yinhua12ORCID,Liu Haojie1,Zhao Zeang3,Ma Xu1,Zhang Xing‐Yu4,Liu Guanzhong1,Song Wei‐Li3

Affiliation:

1. Shanghai Institute of Applied Mathematics and Mechanics School of Mechanics and Engineering Science Shanghai Key Laboratory of Mechanics in Energy Engineering Shanghai University Shanghai 200444 China

2. Shanghai Frontier Science Center of Mechanoinformatics Shanghai 200444 China

3. Institute of Advanced Structure Technology Beijing Institute of Technology Beijing 100081 China

4. State Key Laboratory of Mechanics and Control for Aerospace Structures College of Aerospace Engineering Nanjing University of Aeronautics and Astronautics Nanjing 210016 China

Abstract

AbstractHigh performance flexible batteries are essential ingredients for flexible devices. However, general isolated flexible batteries face critical challenges in developing multifunctional embodied energy systems, owing to the lack of integrative design. Herein, inspired by scales in creatures, overlapping flexible lithium‐ion batteries (FLIBs) consisting of energy storage scales and connections using LiNi0.5Co0.2Mn0.3O2 (NCM523) and graphite electrodes are presented. The scale‐dermis structure ensures a high energy density of 374.4 Wh L−1 as well as a high capacity retention of 93.2% after 200 charge/discharge cycles and 40 000 bending times. A variable stiffness property is revealed that can be controlled by battery configurations and deformation modes. Furthermore, the overlapping FLIBs can be housed directly into the architecture of several flexible devices, such as robots and grippers, allowing to create multifunctionalities that go far beyond energy storage and include load‐bearing and variable flexibility. This study broadens the versatility of FLIBs toward energy storage structure engineering of flexible devices.

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3