Capillary Condensation Mediated Fluidic Straining for Enhanced Bacterial Inactivation

Author:

Zhao Yuanyuan12,A Hubao34,Cheung Yuk Ha12,Lam Yintung1,Tang Jiayue5,Li Han1,Yang Zhibing34,Xin John Haozhong12ORCID

Affiliation:

1. School of Fashion and Textiles The Hong Kong Polytechnic University Hong Kong 999077 China

2. Shenzhen Research Institute The Hong Kong Polytechnic University Shenzhen 518057 China

3. State Key Laboratory of Water Resources Engineering and Management Wuhan University Wuhan 430072 China

4. Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of the Ministry of Education Wuhan University Wuhan 430072 China

5. Sustainable Energy and Environment Thrust, Function Hub Hong Kong University of Science and Technology (Guangzhou) Guangzhou 511453 China

Abstract

AbstractBiomaterials capable of continuously inactivating pathogens are essential for suppressing transmission of infectious diseases, such as epidemic cerebrospinal meningitis and pulmonary tuberculosis. Here, capillary condensation of air moisture within nano‐confined spaces between superhydrophilic rigid nanorods is shown and target microbiology spontaneously stretch and inactivate aerosolized microorganisms. Specifically, the negative Gaussian curvature‐shaped water condensate causes fluidic straining, comprising surface tension and Laplace pressure, strong enough to deform and eliminate the selected bacteria. Plate counting quantifies the sharply reduced contact‐killing period for superhydrophilic and bare nanorods (6 vs 100 min for E. coli, 20 vs 120 min for S. aureus) under relative humidity of 70%. Theoretical calculations and experimental studies indicate increased mechanical straining and mechano‐bactericidal by improving air moisture content. To further illustrate utility, long‐term antibacterial medical masks are fabricated by integrating such nanorods onto commercial fabrics. Collectively, these findings highlight the immense potential of capillary condensation‐induced fluidic straining as an eco‐friendly, broad‐spectrum, and highly efficient antibacterial strategy.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3