Regulated Ion‐Conductive Electrode–Electrolyte Interface by In Situ Gelation for Stable Zinc Metal Anode

Author:

Meng Xinyu1,Zhou Shuang1,Li Jianwen1,Chen Yining1,Lin Shangyong2,Han Chao1,Pan Anqiang13ORCID

Affiliation:

1. School of Materials Science and Engineering Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province Central South University Changsha 410083 China

2. School of Minerals Processing and Bioengineering Central South University Changsha 410083 China

3. College of Physical Science and Technology Xinjiang University Urumqi Xinjiang 830046 China

Abstract

AbstractDendritic growth and severe side reactions remain challenging problems for advancing aqueous zinc‐ion batteries. Those critical issues are closely related to the interfacial chemistry, solvation structure, and transportation kinetics of zinc ions. Herein, a regulated ion‐conductive electrode–electrolyte interface (PVA‐Zn(CF3SO3)2‐Si3N4, denoted as PZS) on Zn metal has been in situ constructed, which simultaneously solves the above‐mentioned issues. PZS can effectively accelerate ion transportation and extrude interfacial water, thus endowing dendrite‐free Zn deposition and eliminating side reactions. Benefiting from these features, the PZS‐Zn exhibits stable and reversible Zn stripping/plating with an ultralong cycling life of 3800 h, and an ultrahigh Coulombi efficiency of 99.8%. The full cell paired with the NH4V4O10 cathode runs stably over 1000 cycles at 5 A g−1 with near 100% capacity retention and is demonstrated to cycle up to 200 times along with 71.94% capacity retention in a practical cathode‐anode coupling configuration pouch cell. With this interfacial design, the assembled zinc batteries display excellent cycling stability, paving a practical way for aqueous Zn‐storage systems.

Funder

Postdoctoral Research Foundation of China

Science and Technology Program of Hunan Province

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3