PNIPAM/PEDOT:PSS Hydrogels for Multifunctional Organic Electrochemical Transistors

Author:

Lopez‐Larrea Naroa1,Wustoni Shofarul2,Peñas Mario Iván13,Uribe Johana2,Dominguez‐Alfaro Antonio1,Gallastegui Antonela1,Inal Sahika2,Mecerreyes David14ORCID

Affiliation:

1. POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology Faculty of Chemistry University of the Basque Country UPV/EHU P Manuel de Lardizabal 3 Donostia‐San Sebastian 20018 Spain

2. Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955‐6900 Saudi Arabia

3. Institute of Polymer Science and Technology ICTP‐CSIC Juan de la Cierva 3 Madrid 28006 Spain

4. IKERBASQUE Basque Foundation for Science Bilbao Spain

Abstract

AbstractThe development of multifunctional organic materials represents a vibrant area of research, with applications spanning from biosensing to drug delivery. This study shows the development of a multifunctional bioelectronic device suitable for prolonged temperature monitoring and drug delivery applications. The device relies on a conducting and thermo‐responsive hydrogel made of poly(3,4‐ethylenedioxythiophene) doped with poly(styrene sulfonate) (PEDOT:PSS) and poly(N‐isopropylacrylamide) (PNIPAM). This multifunctional hydrogel is 4D printable by Digital Light Processing (DLP) method and exhibits optimal biocompatibility. The hydrogel features a low critical solution temperature (LCST) ≈35 °C, above which its resistance changes dramatically due to the shrinkage it undergoes with temperature. The integration of PNIPAM/PEDOT hydrogel into an organic electrochemical transistor (OECT) as the gate electrode allows to generate a miniaturized bioelectronic device with a reversible response to temperature variations between 25 to 45 °C, along with high sensitivity of 0.05 °C−1. Furthermore, the PNIPAM/PEDOT hydrogel demonstrates its utility in drug delivery, achieving an Insulin‐FITC release rate of 82 ± 4% at 37 °C, mimicking human body conditions. The hydrogel's functionality to store and release the insulin does not compromise its thermo‐responsivity and the overall performance of the OECT. This multifunctional OECT opens new avenues for the development of customizable and personalized sensing and drug‐delivery systems.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3