Affiliation:
1. State Key Laboratory of Materials‐Oriented Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Material (SICAM) College of Chemical Engineering Nanjing Tech University Nanjing 211816 China
2. Department of Chemistry School of Science Xi'an Jiaotong‐Liverpool University Suzhou 215123 China
Abstract
AbstractMetal–organic cage‐based photo‐responsive supramolecular frameworks (PSMFs) with permanent porosity have gained attention for their modular properties, controllable functionality, and light‐induced reversible responsiveness. However, their high porosity and photo‐responsive efficiency are often compromised due to poor structural stability upon solvent removal, limiting their potential applications. Here, a solution to overcome this challenge by employing a surface polymerization strategy using isophorone diisocyanate (IDI) to stabilize PSMF (PCC‐20t) is presented. This approach results in the composite of PCC‐20t@PolyIDI, which preserves crystallinity and permanent high‐porosity while avoiding structural collapse commonly observed in highly porous supramolecular frameworks. Moreover, compared to activated PCC‐20t, PCC‐20t@PolyIDI exhibits an 18.6‐fold increase in specific surface area. Remarkably, the structural variability of PCC‐20t@PolyIDI can be observed in the photo‐regulation behavior of CO2 capacity under the irradiation of vis‐ and UV‐light, showing a 27.9% change in adsorption amount for CO2 which is significantly higher than that of the activated PCC‐20t with 7.0% for CO2. Grand Canonical Monte Carlo simulations demonstrate the light‐regulated adsorption performance is attributed to the configuration transformation of azobenzene from trans‐ to buckling state. The findings may pave the way for stabilizing high‐porosity materials to simultaneously meet demands for high‐porosity and photo‐responsive efficiency.
Funder
Natural Science Foundation of Jiangsu Province
National Science Fund for Distinguished Young Scholars
National Natural Science Foundation of China