Structural Explanation of the Dielectric Enhancement of Barium Titanate Nanoparticles Grown under Hydrothermal Conditions

Author:

Suzana Ana F.1ORCID,Liu Sizhan2,Diao Jiecheng3,Wu Longlong1,Assefa Tadesse A.1,Abeykoon Milinda4,Harder Ross5,Cha Wonsuk5,Bozin Emil S.1,Robinson Ian K.13

Affiliation:

1. Condensed Matter Physics and Materials Science Division Brookhaven National Laboratory Upton NY 11973 USA

2. Energy Storage Division Interdisciplinary Science Department, Brookhaven National Laboratory Upton NY 11973 USA

3. London Centre for Nanotechnology University College London London WC1E 6BT UK

4. Photon Sciences Division Brookhaven National Laboratory Upton NY 11973 USA

5. Advanced Photon Source Argonne National Laboratory Lemont IL 60439 USA

Abstract

AbstractWhen synthesized under certain conditions, barium titanate (BaTiO3, BTO) nanoparticles are found to have the non‐thermodynamic cubic structure at room temperature. These particles also have a several‐fold enhanced dielectric constant, sometimes exceeding 6000, and are widely used in thin‐layer capacitors. A hydrothermal approach is used to synthesize BTO nanocrystals, which are characterized by a range of methods, including X‐ray Rietveld refinement and the Williamson–Hall approach, revealing the presence of significant inhomogeneous strain associated with the cubic phase. However, X‐ray pair distribution function measurements clearly show the local structure is lower symmetry than cubic. This apparent inconsistency is resolved by examining 3D Bragg coherent diffraction images of selected nanocrystals, which show the existence of ≈50 nm‐sized domains, which are interpreted as tetragonal twins, and yet cause the average crystalline structure to appear cubic. The ability of these twin boundaries to migrate under the influence of electric fields explains the dielectric anomaly for the nanocrystalline phase.

Funder

Argonne National Laboratory

Office of Science

Brookhaven National Laboratory

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3