Uncovering Original Z Scheme Heterojunctions of COF/MOx (M = Ti, Zn, Zr, Sn, Ce, and Nb) with Ascendant Photocatalytic Selectivity for Virtually 99.9% NO‐to‐NO3 Oxidation

Author:

Zhang Yujiao1,Hu Zhao1,Zhang Heng1,Li Hu1ORCID,Yang Song1ORCID

Affiliation:

1. National Key Laboratory of Green Pesticide Key Laboratory of Green Pesticide & Agricultural Bioengineering Ministry of Education State‐Local Joint Laboratory for Comprehensive Utilization of Biomass Center for R&D of Fine Chemicals Guizhou University Guiyang Guizhou 550025 China

Abstract

AbstractNovel Covalent organic skeleton/metal oxide (COF/MOx; M = Ti, Zn, Zr, Sn, Ce, Nb) Z scheme heterojunction is constructed to achieve highly selective oxidation of nitric oxide (NO). Under visible‐light irradiation, the optimized COF/TiO2 (CF/TS0.05) catalyst showed an excellent NO removal rate (64.5%), resulting from the improvement of light absorption performance, the separation efficiency of photoexcited electron‐hole pairs, and O2 activation due to the uniform coating of COF. Meanwhile, the electrons are captured by the adsorbed oxygen to effectively render into superoxide radicals as the main active species, and the corresponding holes are retained at the complex interface due to the hydrophobic COF coating, which extremely reduced the ability of activated water to produce hydroxyl radicals and limited the production of intermediate nitrogen dioxide (NO2), thereby improving the oxidation selectivity toward nitrate (NO3) at 99.9% in the Z scheme heterojunction. More importantly, other COF/MOx catalysts also exhibited superior selectivity and activity, meaning that this scheme is credited with universality. In short, this study reveals that the generation of only one main reactive oxygen species is enhanced by reasonable control of electron‐hole pair in the new Z scheme heterojunction to significantly increase photocatalytic performance and selectivity.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3