Integrated Trap‐Adsorption‐Catalysis Nanoreactor for Shuttle‐Free Aqueous Zinc‐Iodide Batteries

Author:

Zhu Lingfeng123,Guan Xinwei2,Fu Yang2,Zhang Zhenfang2,Li Yitong2,Mai Qi2,Zhang Congcong1,Yuan Zhilong1,Wang Ye1,Li Peng2,Li Hui2,Su Dawei4,Jia Baohua2,Yu Hai3,Sun Yifei156,Ma Tianyi2ORCID

Affiliation:

1. School of Energy and Power Engineering Beihang University Beijing 100191 China

2. Centre for Atomaterials and Nanomanufacturing (CAN), School of Science RMIT University Melbourne VIC 3000 Australia

3. CSIRO Energy 10 Murray Dwyer Circuit Mayfield West NSW 2304 Australia

4. School of Mathematical and Physical Sciences Faculty of Science University of Technology Sydney (UTS) Sydney NSW 2007 Australia

5. Research Center for Advanced Energy and Carbon Neutrality Beihang University Beijing 100191 China

6. School of Environmental Science and Engineering Hainan University Haikou 570228 China

Abstract

AbstractAqueous zinc‐iodine batteries (AZIBs) are very promising energy storage systems owing to their safety, reliability, large specific capacity, and durable lifespan. However, the sluggish iodine redox kinetics and polyiodides shuttle effect severely impedes their wider application. Addressing these challenges, this study develops a new multifunctional nanoreactor integrating “Trap‐Adsorption‐Catalysis” advantages, which features the electron‐rich cobalt (Co) nanoparticles embedded in porous activated carbon (AC). Benefiting from the integrated advantages of trap‐adsorption‐catalysis behavior in the nanoreactor, this novel system enables the fast iodine (I2/I) conversion by enhanced kinetics, achieving high utilization of iodine and corrosion‐free zinc anode without producing polyiodides. In situ UV–vis spectroscopy, theoretical calculation combined with electrochemical analysis demonstrates that the Co@AC nanoreactor reduces the adsorption energy and conversion energy barrier of iodine species, and accelerates the conversion of polyiodides to improve the electrochemical properties. Notably, the Co@AC/I2 cathode delivers an outstanding rate capability of 221.1 and 102.5 mA h g−1 at the current density of 0.5 and 25C with high CE over >99.9%, respectively, low self‐discharge rate over 96h and high energy efficiency (EE) of 89.2% at 5.0C over 1000 cycles. These self‐discharge and EE properties are the best among AZIBs systems with Co‐based host cathodes ever reported.

Funder

Australian Renewable Energy Agency

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3