Rotatable Methylene Ether Bridge Units Enabling High Chain Flexibility and Rapid Ionic Transport in a New Universal Aqueous Conductive Binder

Author:

Zhang Farong1,Xia Hongyu1,Wei Tongye2,Liu Bei1,Li Huaming13,Lu Zhouguang4ORCID,Yang Mei13ORCID

Affiliation:

1. College of Chemistry Xiangtan University Xiangtan Hunan 411105 P. R. China

2. Hunan Institute of Advanced Sensing and Information Technology Xiangtan University Hunan 411105 P. R. China

3. Key Laboratory of Polymeric Materials & Application Technology of Hunan Province Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province Key Lab of Environment‐Friendly Chemistry and Application in Ministry of Education Xiangtan University Xiangtan Hunan 411105 P. R. China

4. Department of Materials Science and Engineering Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials Southern University of Science and Technology Shenzhen Guangdong 518055 P. R. China

Abstract

AbstractBinders play an essential role in maintaining the mechanical integrity and stability of electrodes. Herein, a novel aqueous and conductive binder (OXP/CNT‐1.5) consisting of carbon nanotubes (CNTs) interwoven with a flexible nano‐film of oxidized pullulan (OXP) is designed. The rotatable methylene ether bridge units within OXP chain endow the binder with high chain flexibility, facilitate rapid ion transport, and buffer severe volumetric expansion during charge‐discharge cycling. Furthermore, its tight intertwining with CNTs forms continuously conductive and flexible skeletons, which can firmly grasp active nanoparticles through a “face‐to‐point” bonding type, guaranteeing the electrodes high conductivity and outstanding mechanical integrity. More importantly, these conductive binders are applicable to the Si/C anode as well as the LiFePO4 cathode. The as‐fabricated Si/C anode delivers a 88.2% capacity retention after 100 cycles and 80.2% capacity retention at 0.5 A g−1 (vs 0.05 A g−1), far surpassing the electrode fabricated by conventional polyvinylidene fluoride binder and carbon black mixtures. The LiFePO4/Si/C full cells based on OXP/CNT‐1.5 demonstrate excellent electrochemical behavior and stability (97.4% capacity retention after 100 cycles). This work highlights the key role of rotatable methylene ether bridge units to enhance the flexibility, ion conductivity, and stability, which is inspiring in the context of designing novel binders for high‐performance batteries.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3