Optimizing d‐p Orbital Hybridization with Abundant Unfilled Antibonding Orbital in Multi‐Metal Layered Double Hydroxide: Motivating Efficient Oxygen Evolving

Author:

Zeng Kai1ORCID,Chao Ming2,Tian Meng3,Jiang Shuhao1,Zhaoshi Yijia1,Feng Jiawen1,Sun Zhihui4,Li Yibing1ORCID

Affiliation:

1. Institute of Smart City and Intelligent Transportation Southwest Jiaotong University Chengdu Sichuan 610032 China

2. College of Energy Soochow Institute for Energy and Materials Innovations Soochow University Suzhou Jiangsu 215006 China

3. Interdisciplinary Center for Fundamental and Frontier Sciences Nanjing University of Science and Technology Jiangyin Jiangsu 214443 China

4. School of Mines China University of Mining and Technology Xuzhou Jiangsu 221116 China

Abstract

AbstractManipulating the electronic structure and coordination configuration of heterogeneous electrocatalyst is an advantageous strategy to motivate the intrinsic activity but remains challenging. Herein, guided by the theoretical mechanism of the d‐band center and valence‐bond theory, the high‐valence metal‐modulated nickel‐vanadium layered double hydroxides (M‐NiV LDH, M = Zr, and Mo) with interfacial oxygen bridge bonding structure are rationally designed and fabricated, affording a 3D vertically staggered and porous nanosheets array network. Benefitting from the abundant unfilled antibonding orbitals induced by the optimized Zr d‐orbital and O p‐orbital hybridization, the introduction of Zr site is beneficial to accelerate charge transfer kinetics and optimize the deprotonation of OH* as well as lower the O* → OOH* free energy. As a result, the as‐prepared Zr‐NiV LDH exhibits a promising oxygen evolution reaction performance with low overpotential and favorable long‐term stability. This work provides valuable insights into the design of electrocatalysts for electronic regulation and intrinsic activity improvement.

Funder

Natural Science Foundation of Sichuan Province

Fundamental Research Funds for the Central Universities

Southwest Jiaotong University

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3