Affiliation:
1. Department of Materials Science State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 P. R. China
2. Zhangjiang Fudan International Innovation Center Shanghai 201210 P. R. China
3. Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception Institute of Optoelectronics Fudan University Shanghai 200433 P. R. China
Abstract
AbstractFibrous photodetectors (FPDs) have attracted great interest in wearable and consumer electronics, which is a lightweight and flexible tools to achieve efficient light information transmission. However, there is a necessary compromise between high optoelectronic performance and high‐level integration. Herein, a woven optoelectronic keyboard consisting of 40 PD button units is extended and integrated from four individual FPDs, with the integration level expanding by 1000%. Each FPD is based on uniform type‐II TiO2/Cs3Cu2I5 heterojunction, which exhibits greatly reduced dark current by eight orders of magnitudes, large rectification ratio up to 33306@± 5V, high on–off ratio of 2.8 × 104@−1 V and self‐powered responsivity of 26.9 mA W−1. The vacuum‐deposited Cs3Cu2I5 nanoparticles finely passivate the massive defects and serve as a p‐type hole transport layer to improve hole transfer efficiency, which greatly promotes the radial transport and collection of photogenerated electrons. Moreover, the photocurrent remains highly stable after bending and twisting states. Intriguingly, the woven optoelectronic keyboards successfully realize logic AND/OR, further identifying the UV light signal as a keying text signal (“A–Z” letters, “0–9” numbers, and four punctuations). This work not only provides a scalable strategy to reduce device redundancy but also shows the great potential of fibrous photodetectors for wearable optical communication.
Funder
National Natural Science Foundation of China
Science and Technology Commission of Shanghai Municipality
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献