A Versatile Passivated Protein‐Adsorption Platform for Rapid Healing of Vascular Stents by Modulating the Microenvironment

Author:

Li Linhua1,Cao Zhengjiang1,Zhang Chunle1,Li Li2,Li Qingying1,Liu Chang1,Qu Chao3,Luo Rifang4,Fu Ping1,Wang Yunbing4ORCID

Affiliation:

1. Kidney Research Institute, Division of Nephrology West China Hospital of Sichuan University Chengdu 610041 China

2. Institute of Clinical Pathology West China Hospital of Sichuan University Chengdu 610041 China

3. Department of Ophthalmology, Sichuan Provincial People's Hospital University of Electronic Science and Technology of China Chengdu 611731 China

4. National Engineering Research Center for Biomaterials Sichuan University Chengdu 610064 China

Abstract

AbstractBiodegradable stents have paved the way to treat coronary artery disease. However, rapid reendothelialization is required to solve the problems of mismatched degradation rates, localized inflammation, and insufficient biocompatibility. Herein, a novel passivated protein‐adsorption coating is synthesized by coordination chelation, oxidation, cross‐linking, polymerization, and deposition of dopamine, (‐)‐epigallocatechin gallate (EGCG), and copper ions (Cu2+) using two‐electron oxidation. This coating exhibits hierarchical functionality, that is, at the macroscale, its superhydrophilicity conveys antifouling ability; whereas at the microscale, the active groups (quinone‐, amino‐, hydroxyphenyl groups and aromatic ring) facilitate protein adsorption. Antifouling ability prevents acute thrombosis and inflammation and maintains initial microenvironment stability post‐implantation. The active groups facilitate gradual endothelial cells (ECs) adhesion. Meanwhile, the decomposition of nitric oxide (NO) donors to release NO is catalyzed by Cu2+, and EGCG alleviates or prevents oxidative stress damage, inflammatory responses, thrombosis formation, and excessive smooth muscle cells proliferation in the stent microenvironment. This provides favorable conditions for the rapid and healthy growth of ECs. This study proposes a novel strategy for rapid neointima formation comprising healthy ECs on the surfaces of biodegradable stents by depositing a passivated protein‐adsorption coating (polydopamine/EGCG/Cu), opening new possibilities for the efficient treatment of coronary artery disease.

Funder

National Key Research and Development Program of China

Key Research and Development Program of Sichuan Province

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3