Multiple Structure Reconstruction by Dual Dynamic Crosslinking Strategy Inducing Self‐Reinforcing and Toughening the Polyurethane/Nanocellulose Elastomers

Author:

Yang Weijun1ORCID,Zhu Yanlin1,Liu Tianxi1,Puglia Debora2,Kenny Jose M.2,Xu Pengwu1,Zhang Rui1,Ma Piming1

Affiliation:

1. The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 China

2. Civil and Environmental Engineering Department Materials Engineering Center Perugia University UdR INSTM 05100 Terni Italy

Abstract

AbstractHigh‐performance elastomers are expected to possess excellent healing and recycling ability, damage resistance in conjunction with high strength and toughness. Herein, a dual dynamic crosslinking strategy is implemented by multiple hydrogen and disulfide bonds to obtain a novel amorphous and transparent polyurethane/nanocellulose elastomer with excellent self‐healing, self‐reinforcing and toughening performance. First, hydrogen bonds are introduced in TEMPO‐oxidized cellulose nanofibers (TCNF) by modification with 2‐ureido‐4[1H]‐pyrimidone (UTCNF), while disulfide bonds (SS) are introduced in the polyurethane (PU) main chain, leading to the formation of dual dynamic cross‐linking networks. The PU‐SS‐UTCNF elastomer can fully self‐heal within 4.0 h at 50 °C. Surprisingly, for the first time, the PU‐SS‐UTCNF elastomer also self‐strengthens and self‐toughens after multiple hot‐pressing, with tensile strength and toughness that increase by up to 401% and 257% compared to original elastomer samples, up to 50.0 MPa and 132.5 MJ m‐3. The self‐strength and self‐toughening effects are attributed to 1) reconstruction of dual dynamic networks that increase the cross‐linking degree during the multiple hot‐pressing processes; 2) multiple hydrogen bonds in the system are beneficial to the orientation of highly crystallized UTCNF, as a replacement of stress‐induced process in deformation under external tensile force.

Funder

National Natural Science Foundation of China

State Administration of Foreign Experts Affairs

Natural Science Foundation of Jiangsu Province for Distinguished Young Scholars

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3