Bio‐Functional Hydrogel Microspheres for Musculoskeletal Regeneration

Author:

Yang Jielai1ORCID,Xia Pengfei23ORCID,Meng Fanshu1,Li Xingchen1,Xu Xiangyang1

Affiliation:

1. Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China

2. Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery Tongren Hospital Shanghai Jiao Tong University School of Medicine 1111 Xianxia Road Shanghai 200336 P. R. China

3. Center for Spinal Minimally Invasive Research Shanghai Jiao Tong University 1111 Xianxia Road Shanghai 200336 P. R. China

Abstract

AbstractThe worldwide prevalence of musculoskeletal disorders is expected to rise due to an accelerating aging population and increasing associated factors. Despite the high rate of disability induction, clinical options for the treatment of musculoskeletal disorders remain limited. Hydrogel microspheres (HMSs), which are colloidal particles with crosslinked polymer networks at the nanometer scale, are characterized by excellent biocompatibility, easy‐to‐tune structures (e.g., stiffness, porosity, and composition), and high encapsulation efficiency of therapeutic agents (e.g., drugs and cells). At present, multiple techniques are utilized for the fabrication of HMSs and encapsulation of therapeutic agents. The HMSs can be produced and used in different states to match specific utilizations. These desirable properties, along with their injectability, bestow HMSs with mutifunctionalities that can be utilized for a variety of biomedical applications (e.g., delivery of biologics, tissue regeneration, and bio‐lubrication), and thus enable them to be promising tools for tackling a variety of clinical diseases. Herein, the focus is the fabrication and application of therapeutic HMSs for i) bone disorders, ii) cartilage and osteochondral disorders, iii) intervertebral disc (IVD) disorders, and iv) neurovascular disorders, with the aim of overviewing the recent progress to summarize key contributions and findings and highlight the limitations and opportunities in this field.

Funder

National Natural Science Foundation of China

Shanghai Municipal Health Commission

Publisher

Wiley

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3