Decoding the Broadband Emission of 2D Pb‐Sn Halide Perovskites through High‐Throughput Exploration

Author:

Foadian Elham1ORCID,Yang Jonghee12ORCID,Harris Sumner B.3,Tang Yipeng1,Rouleau Christopher M.3,Joy Syed4,Graham Kenneth R.4,Lawrie Benjamin J.35,Hu Bin1,Ahmadi Mahshid1ORCID

Affiliation:

1. Institute for Advanced Materials and Manufacturing Department of Materials Science and Engineering University of Tennessee Knoxville TN 37996 USA

2. Department of Chemistry Yonsei University Seoul 03722 Republic of Korea

3. Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge TN 37831 USA

4. Department of Chemistry University of Kentucky Lexington KY 40506 USA

5. Materials Science and Technology Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA

Abstract

AbstractUnlike single‐component 2D metal halide perovskites (MHPs) exhibiting sharp excitonic photoluminescence (PL), a broadband PL emerges in mixed Pb‐Sn 2D lattices. Two physical models –self‐trapped exciton and defect‐induced Stokes‐shift – are proposed to explain this unconventional phenomenon. However, the explanations provide limited rationalizations without consideration of the formidable compositional space, and thus, the fundamental origin of broadband PL remains elusive. Herein, the high‐throughput automated experimental workflow is established to systematically explore the broadband PL in mixed Pb‐Sn 2D MHPs, employing PEA (Phenethylammonium) as a model cation known to work as a rigid organic spacer. Spectrally, the broadband PL becomes further broadened with rapid PEA2PbI4 phase segregation with increasing Pb concentrations during early‐stage crystallization. Counterintuitively, MHPs with high Pb concentrations exhibit prolonged PL lifetimes. Hyperspectral microscopy identifies substantial PEA2PbI4 phase segregation in those films, hypothesizing that the establishment of charge transfer excitons by the phase segregation upon crystallization at high‐Pb compositions results in distinctive PL properties. These results indicate that two independent mechanisms—defect‐induced Stoke‐shifts and the establishment of charge transfer excitons by phase segregation—coexist which significantly correlates with the Pb:Sn ratio, thereby simultaneously contributing to the broadband PL emission in 2D mixed Pb‐Sn HPs.

Funder

National Science Foundation

Alfred P. Sloan Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3