Ferroelectric Polarization‐Enhanced Performance of Flexible CuInP2S6 Piezoelectric Nanogenerator for Biomechanical Energy Harvesting and Voice Recognition Applications

Author:

Zhang Yunchen1,Mao Junqi1,Zheng Ren‐Kui2,Zhang Jiawei1,Wu Yonghui1,Wang Xiaobing1,Miao Kexin1,Yao Hongbo1,Yang Liya1ORCID,Zheng Haiwu1ORCID

Affiliation:

1. Henan Province Engineering Research Center of Smart Micro‐nano Sensing Technology and Application School of Physics and Electronics Henan University Kaifeng 475004 P. R. China

2. School of Physics and Materials Science Guangzhou University Guangzhou 510006 P. R. China

Abstract

Abstract2D piezoelectric materials have strong intrinsic piezoelectricity and superior flexibility, which are endowed with huge potential to develop piezoelectric nanogenerators (PENGs). However, there are few attempts to investigate the energy harvesting of 2D ferroelectric materials. Herein, an enhanced output performance is reported by ferroelectric polarization in a PENG with exfoliated 2D ferroelectric CuInP2S6 (CIPS). Specifically, the polarized CIPS‐based PENG produces a short‐circuit current of 760 pA at 0.85% tensile strain, which is 3.8 times higher than that of unpolarized CIPS‐based PENG. Systematical PFM and Raman analysis reveal that the ferroelectric polarization remarkably reinforces the effective piezoelectric constant of CIPS nanoflakes and boosts the in‐plane migration and out‐of‐plane hopping of copper ions, which is the main reason for the enhancement of output performance. Furthermore, the CIPS‐based PENG can not only be utilized to harvest biomechanical energy such as wrist joints movement, but also exhibits a potential for a voice recognition system integrated with deep learning technology. The classification accuracy of a series of letter sounds is as high as 96%. This study commendably broadens the application scope of 2D materials in micro‐nano energy and intelligent sensors, which will have profound implications for exploring wearable nanoelectronic devices.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Henan Province

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3