Chiral Mechanical Metamaterials for Tunable Optical Transmittance

Author:

Forte Antonio Elia12,Melancon David13,Zanati Mohamed1,De Giorgi Marta4,Bertoldi Katia1ORCID

Affiliation:

1. J.A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA

2. Department of Engineering King's College London London WC2R 2LS UK

3. Department of Mechanical Engineering Polytechnique Montreal Quebec H3T 1J4 Canada

4. Department of Engineering for Innovation University of Salento 73100 Lecce Italy

Abstract

AbstractFlexible metamaterials have been increasingly harnessed to create functionality through their tunable and unconventional response. Herein, chiral unit cells based on Archimedean spirals are employed to transform a linear displacement into twisting. First, the effect of geometry on such extension‐twisting coupling is investigated. This unravels a wide range of highly nonlinear behaviors that can be programmed. Additionally, it is demonstrated that by combining the spirals with polarizing films one can create mechanical pixels capable of modulating the transmission of light through deformation. Guided by experiments and numerical analyses, pixels are arranged in 2D arrays to realize black and white and color displays, which reveal distinct images at different states of deformation. As such, the study puts forward a methodology for the design of an emerging class of flexible devices that can convert nonlinear elastic deformation to tunable optical transmittance.

Funder

Simons Foundation

Division of Materials Research

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3