Disrupting Intracellular Iron Homeostasis by Engineered Metal‐Organic Framework for Nanocatalytic Tumor Therapy in Synergy with Autophagy Amplification‐Promoted Ferroptosis

Author:

Du Jiahao1,Zhou Mengting1,Chen Qian1ORCID,Tao Yichao1,Ren Jun2,Zhang Yang13ORCID,Qin Huanlong1ORCID

Affiliation:

1. Nanomedicine and Intestinal Microecology Research Center Shanghai Tenth People's Hospital School of Medicine Tongji University Shanghai 200072 P. R. China

2. School of Chemical Engineering and Technology Shanxi Key Laboratory of High‐Performance Battery Materials and Devices North University of China Taiyuan 030051 P. R. China

3. Precision Medicine Center Taizhou Central Hospital (Taizhou University Hospital) Taizhou Zhejiang 318000 P. R. China

Abstract

AbstractMetal‐organic frameworks (MOFs) featuring good biocompatibility and tunable microstructures are developed to generate reactive oxygen species (ROS) for nanocatalytic therapy. However, the relatively low catalytic activity of MOF and intracellular ion homeostasis, a self‐protective mechanism to resist the intracellular accumulation of metal ions, results in the undesirable efficacy of tumor therapy. Herein, a therapeutic strategy is introduced of breaking intracellular iron homeostasis for nanocatalytic therapy in synergy with autophagy amplification‐promoted ferroptosis, based on etched MOF nanocatalyst (denoted COS@MOF), which is self‐etched by thiamine pyrophosphate (TPP) and further modified with autophagy agonist chitosan oligosaccharides (COS). Such self‐etched MOF exhibit an open cavity structure that is more conducive to adsorbing reactive molecules and producing more active sites, and an enhanced Fe(II)/Fe(III) ratio, reinforcing catalytic activity for ROS generation. The catalytic process of COS@MOF can be accelerated by overexpressed endogenous hydrogen sulfide (H2S) within colorectal tumors which reduces Fe3+ into more active Fe2+. In vitro and in vivo results demonstrate that COS@MOF amplifies autophagy to break iron homeostasis for facilitating ROS production to promote ferroptosis, achieving synergetic nanocatalytic/ferroptosis tumor therapy. This study provides a promising paradigm to elevate MOF‐based catalytic performance in synergy with autophagy amplification‐promoted ferroptosis for enhanced therapeutic efficacy.

Funder

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3