Modulating the Locally Excited States with a Regulating Substituent for Highly Efficient Red/Near‐Infrared Thermally Activated Delayed Fluorescence Emitters

Author:

Feng Zi‐Qi1,Yu You‐Jun1,Song Zi‐Yu1,Song Min1,Zuo Peng1,Jiang Zuo‐Quan1,Zhou Dong‐Ying1,Liao Liang‐Sheng12ORCID

Affiliation:

1. Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon‐Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 China

2. Macao Institute of Materials Science and Engineering Macau University of Science and Technology Taipa Macau 999078 China

Abstract

AbstractDeveloping highly efficient red/near‐infrared (NIR) thermally activated delayed fluorescence (TADF) materials is important for organic light‐emitting diodes (OLEDs). Here, two TADF emitters, APTT and APTI, which have the same D/A backbone but different attaching groups at acenaphtho‐[1,2‐b]pyrazine‐8,9‐dicarbonitrile (APDC) core, are reported. The appended regulating groups can not only suppress the D/A rotation due to the space confinement effects but also modulate the locally excited triplet state (3LE). The improved molecular rigidity suppresses the non‐radiative process, accounting for the improved photoluminescence quantum yields (PLQYs), while the modulated 3LE promotes the reverse intersystem crossing (RISC) process due to the high utilization efficiency of triplets. Consequently, both APTT and APTI demonstrate high PLQY and fast RISC process, thereby enhancing TADF efficiency. The doped devices based on APTT and APTI achieve maximum external quantum efficiency (EQEmax) values of 20.5% and 25.4% with emission peaks at 664 and 670 nm, respectively. The non‐doped devices of APTT and APTI achieve the EQEmax of 2.8% and 2.9% with emission peaks at 788 and 794 nm, respectively. Encouragingly, the non‐doped devices of APTI have set new records for near‐infrared TADF OLEDs based on the APDC core. This study provides an efficient approach to modulating the optoelectronic properties of highly efficient NIR TADF OLEDs.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Higher Education Discipline Innovation Project

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3