Affiliation:
1. School of Chemistry and Chemical Engineering School of the Environment State Key Laboratory of Analytical Chemistry for Life Science State Key Laboratory of Pollution Control and Resource Reuse Nanjing University Nanjing 210023 P. R. China
2. Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials Nanjing University of Posts & Telecommunications Nanjing 210046 P. R. China
3. School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 P. R. China
Abstract
AbstractThe competence to construct sensing platforms capable of selective manipulation in complex biological fluids undoubtedly underpins critical future advances in healthcare. Despite the fact that electrochemiluminescence (ECL) has long been an influential technology for clinical diagnosis worldwide, ECL interface that optimizes fouling resistance has been mimicked less often, especially in an integrated platform. Herein, ECL transducer is prepared by the integration of protonated g‐C3N4 and Ti3C2Tx MXene nanosheets, displaying enhanced charge injection/transfer, and inherent catalytic capacities for coreactant ECL. Mussel‐bioinspired polydopamine was exploited as a thin, surface‐adherent substrate to coat the solid‐state transducer and further initiate secondary reactions via Michael Addition for tailing recognition element and zwitterionic segment. This architecture guarantees not only the least suppression of ECL performance but also desired antifouling properties, ensuring < 7.45% of ECL loss after 96 h of exposure to complex biological fluids. Creatively, a highly integrated platform is equipped with the established biointerface, gas diffusion electrode, and fluidic ECL microreactor, affording high‐performance exosome checking and dynamics tracking in a non‐label manner. Our study provides a general design strategy to obtain a robust antifouling ECL sensing interface based on zwitterionic chemistries and provides a fresh perspective in developing point‐of‐care and implantable ECL devices.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
State Key Laboratory of Pollution Control and Resource Reuse
China Postdoctoral Science Foundation
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献