Affiliation:
1. Center for Integrated Materials Research Department of Chemistry and iNANO Aarhus University Langelandsgade 140 Aarhus DK‐8000 Denmark
2. Faculty of Pure and Applied Sciences Tsukuba Research Center for Energy Materials Science (TREMS) University of Tsukuba 1‐1‐1 Tennodai Tsukuba Ibaraki 305–8571 Japan
3. State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 China
Abstract
AbstractThe Zn─Sb binary system contains two high‐performing thermoelectric materials, namely the ordered ZnSb and the disordered Zn13Sb10. Both systems exhibit low thermal conductivity, which is speculated to originate from multicentre bonding within Zn2Sb2‐rhombi. Here, the electron density of ZnSb is reported based on multipole modelling of accurate X‐ray diffraction data measured at 20 K. Topological analysis reveals that the bond paths in the rhombus are endocyclically strained and that electron density is concentrated within the rhombus rather than along its geometric bonds consistent with a multicentre bond description. However, the electron density is not equally shared between the geometric bonds of the rhombus. Electron density analysis and modelling of low‐temperature anharmonicity reveal that one Zn–Sb interaction is weaker than the other. Taken together with the orientation of bonds external to the rhombus structure, an alternative description emerges wherein the multicentre bond is more partially localised along one set of the opposite legs of the rhombus. In this description, the stronger bond can be considered a traditional 2‐centre‐2‐electron bond, while the weaker interaction is coordinative to the covalent bond. The anharmonicity and low thermal conductivity may consequently be understood as Zn rattling along the coordinative interaction.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献