Giant Energy Harvesting via Maxwell Displacement Current Enhancement Using Metal Sheet Interspaced Hetero‐Layer Structured Piezo‐Composite Nanofiber Device

Author:

Mahanty Biswajit1ORCID,Ghosh Sujoy Kumar2ORCID,Prasad Gajula1ORCID,Shanmugasundaram Arunkumar13ORCID,Lee Dong‐Weon134ORCID

Affiliation:

1. MEMS and Nanotechnology Laboratory School of Mechanical Engineering Chonnam National University Gwangju 61186 South Korea

2. Department of Condensed Matter Physics and Material Sciences S.N. Bose National Centre for Basic Sciences 6, Block JD, Sector III, Salt Lake Kolkata 700010 India

3. Advanced Medical Device Research Center for Cardiovascular Disease Chonnam National University 77 Yongbong‐ro, Buk‐gu Gwangju 61186 Republic of Korea

4. Center for Next‐Generation Sensor Research and Development Chonnam National University Gwangju 61186 Republic of Korea

Abstract

AbstractThe limited performance of piezoelectric nanogenerators (PENGs) has hindered their practical applications in self‐powered electronics. To address these limitations, this study presents a new design of a PENG that incorporates hetero‐layer structured piezo‐composite nanofibers with interspaced metal sheets. The hetero‐layer structure consists of alternating layers of ferroelectric barium titanate (BT) nanoparticles interfaced with poly(vinylidene fluoride‐co‐trifluoroethylene) (P(VDF‐TrFE)) composite nanofibers (P(VDF‐TrFE)/BT), and conductive graphite nano‐sheets (GNS)‐embedded P(VDF‐TrFE) composite nanofibers (P(VDF‐TrFE)/GNS) mats. The inclusion of interspaced metal sheets in the device configuration enhances the stress concentration effect, thereby effectively distributing the applied mechanical vibrations. Simultaneously, the P(VDF‐TrFE)/BT composite nanofibers improve the piezoelectric coefficient (187.86 pC N−1), while the P(VDF‐TrFE)/GNS composite nanofibers reduce the internal impedance of the device. These combined enhancements result in an increased Maxwell displacement current and power output. Consequently, the hetero‐layer structured PENG exhibits an impressive open circuit voltage (Voc) output of 350 V, a short circuit current (Isc) output of 6 µA, and a power output of 3.62 W m−2. Moreover, the developed PENG demonstrates extraordinary energy harvesting performance under harsh vibrations caused by human musculoskeletal movements, as well as subtle vibrations from heart pulses, emotional changes, and speech recognition. Additionally, the PENG shows its potential use in wearable self‐powered wireless e‐health systems.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3