Biomimetic Spider Silk by Crosslinking and Functionalization with Multiarm Polyethylene Glycol

Author:

Romaņuks Viktors1,Fridmanis Jēkabs1,Schmuck Benjamin23,Bula Anna Līna1,Lends Alons1,Senkane Kristine1,Leitis Gundars1,Gaidukovs Sergejs4ORCID,Smits Krisjanis56,Rising Anna23,Smits Gints1,Jaudzems Kristaps17ORCID

Affiliation:

1. Latvian Institute of Organic Synthesis Aizkraukles 21 Riga LV‐1006 Latvia

2. Department of Medicine Huddinge Karolinska Institute Neo Huddinge 14183 Sweden

3. Department of Animal Biosciences Swedish University of Agricultural Sciences Box 7023 Uppsala 75007 Sweden

4. Institute of Chemistry and Chemical Technology Faculty of Natural Sciences and Technology Riga Technical University P. Valdena Str. 3 Riga LV‐1048 Latvia

5. Baltic Biomaterials Centre of Excellence Headquarters at Riga Technical University P. Valdena Str. 3 Riga LV‐1048 Latvia

6. Institute of Biomaterials and Bioengineering Faculty of Natural Sciences and Technology Riga Technical University P. Valdena Str. 3 Riga LV‐1048 Latvia

7. Faculty of Medicine and Life Sciences University of Latvia Jelgavas 1 Riga LV‐1004 Latvia

Abstract

AbstractSpider silk is renowned for its exceptional mechanical properties, surpassing those of other natural and many synthetic fibers. Yet, replicating its remarkable properties through synthetic production remains a challenge. The variability in the mechanical properties of synthetic spider silks lacking protective coatings, exacerbated by factors such as spinning conditions and humidity levels, poses an additional challenge, impacting their application potential. Bioconjugation offers a versatile synthetic method to modify protein structures, enhancing their pharmacokinetics, solubility, stability, and immune response. In particular, polyethylene glycol (PEG)‐ylation has emerged as a successful strategy with numerous marketed PEG–protein conjugates. This study introduces synthetic spider silk—multiarm PEG bioconjugates, facilitating spidroin crosslinking, and chemical functionalization while retaining a biomimetic spinning approach. Two different examples demonstrate the potential of this approach to improve the fiber's tensile strength and extensibility, respectively, both leading to an increased toughness modulus. Furthermore, the approach could allow the tuning of fiber mechanical properties without developing a new mini‐spidroin construct and fiber coating with lipids attached to multiarm PEG, potentially mitigating the impact of environmental conditions on synthetic spider silk fibers.

Funder

Latvijas Zinātnes Padome

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3