Affiliation:
1. School of Materials Science and Engineering Wuhan University of Technology Wuhan 430070 China
2. School of Materials and Microelectronics Wuhan University of Technology Wuhan 430070 China
Abstract
AbstractTernary strategy is demonstrated as an efficient approach to achieve high short‐circuit current and open‐circuit voltage to boost the performance of organic solar cells (OSCs), however, the realization of high fill‐factor (FF) in ternary OSCs has been rare. In this study, three thiophene terminated non‐fullerene acceptors (NFAs) with methyl or chlorine substitutions on their end‐groups are designed and synthesized, and further incorporated into the state‐of‐the‐art PM6:L8‐BO system to construct ternary OSCs. Subtle changes in their chemical structures significantly modify the molecular packings of these thiophene terminated NFAs. While BTP‐ThMe and BTP‐ThCl have limited forms of dimer, versatile molecular dimers, including “Z” shaped D‐D, “S” shaped A‐A, and “F” shaped A‐D packings exist in BTP‐ThMeCl, which lead to the formation of compact 3D honey‐comb network and this is analogous to the host acceptor L8‐BO. This synergetic molecular packing between BTP‐ThMeCl and L8‐BO contributes to maintain the 3D charge transport network in the ternary system via the formation of NFA co‐crystals at the molecular level, and consequently realizing a maximum power conversion efficiency of 19.1% with a superior FF of 82.2%, which is the highest FF reported so far for OSCs.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献