An Ultrasensitive Perovskite Single‐Model Plasmonic Strain Sensor Based on Piezoelectric Effect

Author:

Li Meili1ORCID,Lu Junfeng2,Wan Peng2,Jiang Mingming2,Mo Yepei1,Pan Caofeng13ORCID

Affiliation:

1. Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 100400 P. R. China

2. College of Physics Key Laboratory of Aerospace Information Materials and Physics (MIIT) Nanjing University of Aeronautics and Astronautics Nanjing 211106 P. R. China

3. Institute of Atomic Manufacturing Beihang University Beijing 100191 P. R. China

Abstract

AbstractInterest in flexible photonics has been motivated by the development of artificial smart skins. In particular, coupling of photonics and mechanics can offer opportunities to realize ultrasensitive strain sensor, however, low‐cost fabrication of flexible sensing device with desired photonic functionality remains a challenge. Hereby, the study reports an ultrasensitive strain‐gauge sensor based on the poly(ethylenenaphthalate (PEN))/monocrystal Au/MgF2/CsPbBr3 nanorod/Al2O3/polyacrylonitrile (in short P/mAu/M/CPB@Al2O3@PAN), which are sensitive to nanoscale structure alterations of PEN substrate via the stress response of the single‐mode laser based on the piezoelectric‐effect. Wherein a low‐threshold single‐mode lasing (Pth ≈ 170 nJ cm−2) is achieved through coating Al2O3 on the CsPbBr3 nanorod, producing the higher quality factor (Q ≈ 1637) to guarantee a much higher sensitivity in sensing application. Reversible spectral regulating of ≈3 nm in single‐mode‐lasing wavelength, with a subnanometre scale resolution <0.4 nm and the wavelength sensitivity (Sλ) as high as 160 nm RIU−1, is validated in response to applied strain ranging from −1.31% to 1.31%. This work not only represents essential progress in construction of ultrasensitive and cost‐effective flexible photonic sensor, but also lays the foundation for the potential application in smart photonic skins.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Natural Science Foundation of Jiangsu Province

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3