Controllable Interface Engineering for the Preparation of High Rate Silicon Anode

Author:

Wang Lei1,Lu Ji‐Jun12,Li Shao‐Yuan1ORCID,Xi Feng‐Shuo1,Tong Zhong‐Qiu1,Chen Xiu‐Hua3,Wei Kui‐Xian2,Ma Wen‐Hui14

Affiliation:

1. Faculty of Metallurgical and Energy Engineering/State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization Kunming University of Science and Technology Kunming 650093 China

2. Silicon Material Industry Research Institution (Innovation Center) of Yunnan Province Kunming 650093 China

3. School of Materials Science and Engineering Yunnan University Kunming 650091 China

4. School of Science and Technology Pu'er University Pu'er 665000 China

Abstract

AbstractSilicon (Si) is considered to be the promising candidate anode for the next generation of high‐energy‐density batteries. However, the poor initial coulombic efficiency (ICE) and rate performance severely hinder its commercial development. Here, fully exploits the 2D structure of photovoltaic silicon waste (PV‐WSi), combining with the advantage of controllable depositing layers offered by fluidized bed atomic layer deposition (FBALD), to simultaneously achieve high ICE and highrate performance of Si‐based anodes. The characteristic of Li+ embedding vertically into the plane direction of the 2D sheet‐like structure of PV‐WSi helps shorten the diffusion distance, alleviating the pulverization problem caused by volume expansion. FBALD is utilized to controllably deposit Li2O (≈1 nm) and TiO2 (≈4 nm) layers to compensate for the loss of Li sources, further suppressing the volume expansion of Si and isolating the side reactions between Si and electrolyte. The prepared Si@Li2O@TiO2 demonstrates ultrahigh ICE (90.9%) and outstanding rate performance (>900 mAh g−1 at a rate of 20 A g−1). Full cells with the Si@Li2O@TiO2 anode and LiFePO4 cathode deliver a stable capacity of 100 mAh g−1 after 300 cycles at 0.5 C. This work provides new ideas for the development of high ICE, high‐rate Si‐based anodes based on low‐cost photovoltaic waste.

Funder

Major Science and Technology Projects in Yunnan Province

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3