Review of Separator Modification Strategies: Targeting Undesired Anion Transport in Room Temperature Sodium–Sulfur/Selenium/Iodine Batteries

Author:

Xu Jing1,Qiu Yashuang1,Yang Jianhao1,Li Haolin1,Han Pingan1,Jin Yang1,Liu Hao2,Sun Bing2,Wang Guoxiu2ORCID

Affiliation:

1. Research Center of Grid Energy Storage and Battery Application School of Electrical and Information Engineering Zhengzhou University Zhengzhou 450001 China

2. Centre for Clean Energy Technology School of Mathematical and Physical Science Faculty of Science University of Technology Sydney Ultimo NSW 2007 Australia

Abstract

AbstractRechargeable sodium–sulfur/selenium/iodine (Na–S/Se/I2) batteries are regarded as promising candidates for large‐scale energy storage systems, with the advantages of high energy density, low cost, and environmental friendliness. However, the electrochemical performances of Na–S/Se/I2 batteries are still restricted by several inherent issues, including the “shuttle effect” of polysulfides/polyselenides/polyiodides (PSs/PSes/PIs), sluggish kinetics of the conversion reactions at the cathodes, and Na dendrite growth at the anodes. Among these challenges, uncontrolled “shuttle effect” of PSs/PSes/PIs is a major contributing factor for the irreversible loss of active cathode materials and severe side reactions on Na metal anodes, leading to rapid failure of the batteries. Separator modification has been demonstrated to be an effective strategy to suppress the shuttling of PSs/PSes/PIs. Herein, the latest achievement in modifying separators for high‐performance Na–S/Se/I2 batteries is comprehensively reviewed. The reaction mechanisms of each battery system are first discussed. Then, strategies of separator modification based on the different functions for regulating the transportation of PSs/PSes/PIs are summarized, including applying electrostatic repulsive interaction, introducing conductive layers, improving sieving effects, enhancing chemisorption capability, and adding efficient electrocatalysts. Finally, future perspectives on the practical application of modified separators in high‐energy rechargeable batteries are provided.

Funder

National Natural Science Foundation of China

Australian Research Council

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3