Affiliation:
1. College of Environmental Science and Engineering Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University) Ministry of Education Changsha 410082 China
Abstract
AbstractThe widely discussed single‐atom catalysts (SACs) are regarded as a kind of attractive material for sulfate radical‐based advanced oxidation processes (SR‐AOPs) owing to their maximum atomic utilization efficiency and outstanding stability. Currently, metal–organic frameworks (MOFs) have appeared as prospective precursors for building SACs due to extensive chelating sites, functional adjustability, and structural tunability. However, there are few critical and systematic reviews about the application of MOF‐derived SACs in SR‐AOPs, especially in‐depth analysis of the mechanisms. Therefore, this review seeks to offer a thorough summary of the development of MOF‐derived SACs in SR‐AOPs. First, the unique advantages of MOFs as derivative precursors for SACs are discussed thoroughly. Afterward, the current synthesis strategies are elaborated categorically to unveil the formation process of single atoms and their coordination environments. Notably, the roles of different reaction sites including the generation of reactive species and mediating electron transfer are further analyzed to explain mechanisms comprehensively. Thereafter, the characterization techniques and theoretical calculations for mechanisms studies are also highlighted. Eventually, critical insights into present challenges and future developments are proposed, which are expected to enhance the catalytic efficiency of MOF‐derived SACs in SR‐AOPs.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hunan Province
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献