In Situ Reconstruction of Helical Iron Borophosphate Precatalyst toward Durable Industrial Alkaline Water Electrolysis and Selective Oxidation of Alcohols

Author:

Yang Hongyuan1,Vijaykumar Gonela1,Chen Ziliang1,Hausmann J. Niklas2,Mondal Indranil1,Ghosh Suptish1,Nicolaus Victor C. J.3,Laun Konstantin3,Zebger Ingo3,Driess Matthias1ORCID,Menezes Prashanth W.12ORCID

Affiliation:

1. Department of Chemistry: Metalorganics and Inorganic Materials Technical University of Berlin Straße des 17 Juni 135. Sekr. C2 10623 Berlin Germany

2. Materials Chemistry Group for Thin Film Catalysis–CatLab Helmholtz‐Zentrum Berlin für Materialien und Energie Albert‐Einstein‐Str. 15 12489 Berlin Germany

3. Department of Chemistry: Physical Chemistry/Biophysical Chemistry Technical University of Berlin Straße des 17 Juni 135, Sekr. PC14 10623 Berlin Germany

Abstract

AbstractIron‐based (pre)catalysts have attracted enormous attention for various electrooxidation reactions due to the low cost, high abundance, and multiple accessible redox states of iron. Herein, a well‐defined helical iron borophosphate (LiFeBPO) is developed as an electro(pre)catalyst for the oxygen evolution reaction (OER) and selective alcohol oxidation. When deposited on nickel foam (NF), LiFeBPO exhibits an exceptional OER performance at ambient conditions attaining a current density of 100 mA cm−2 at ≈276 mV overpotential in 1 m KOH. Notably, this anode sustains durable alkaline water electrolysis at 500 mA cm−2 for over 330 h under industrial conditions (6 m KOH and 85 °C). In –situ and ex situ investigations reveal a deep reconstruction of LiFeBPO during OER, which transforms into a 3D open porous skeleton assembled by ultrasmall, low‐crystalline α‐FeOOH nanoparticles (interfacing with NiOOH of NF). This structure contributes to exposing accessible surface active sites, as well as accelerating mass transport and bubble detachment. Moreover, this electrode also catalyzes the electrooxidation of alcohols (methanol, ethylene glycol, and glycerol) to formic acid (FA) with high selectivity and full conversion. This study provides promising solutions for designing suitable anodes for the simultaneous production of green hydrogen fuel and value–added FA from electrooxidation reactions.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3