Manipulating Interfacial Renovation via In Situ Formed Metal Fluoride Heterogeneous Protective Layer toward Exceptional Durable Sodium Metal Anodes

Author:

Guo Jia1,Li Yue1,Xu Kang1,Huang Ziling1,Hu Weijiang1,Tan Yajun2,Sun Chencheng1,Yang Jun3,Geng Hongbo14ORCID

Affiliation:

1. School of Electronic and Information Engineering Changshu Institute of Technology Changshu Jiangsu 215500 P. R. China

2. Phylion Battery Co, Ltd. Suzhou 215153 P. R. China

3. School of Materials Science and Engineering Jiangsu University of Science and Technology Jiangsu 212003 P. R. China

4. School of Materials Engineering Changshu Institute of Technology Changshu Jiangsu 215500 P. R. China

Abstract

AbstractSodium metal is regarded as an optimal anode material for high‐energy‐density sodium‐ion batteries (SIBs). However, during the processes of sodium deposition and stripping, the failure of the solid electrolyte interphase (SEI) film leads to the continuous accumulation of inactive sodium, thereby compromising the cycling reversibility of the battery. Here, a novel metal fluoride heterointerface layer is generated and constructed through in situ manipulation of the continuous reaction between TiF4 and metal Na. The reconstructed NaF/TiF3 interface layer, which tightly anchors the sodium metal, effectively suppresses the formation of sodium dendrites during the charge‐discharge process. The highly sodium‐philic TiF3 component exhibits strong binding with Na ions, while NaF reduces the Na+ diffusion energy barrier, significantly enhancing the reaction kinetics. Due to the successful artificial construction of this interface layer, the Na/TiF4 composite electrode demonstrates an exceptional ultra‐long cycling stability of 2370 h in symmetric cells (0.5 mAh cm−2). Density functional theory (DFT) calculations further validate the functionality of each component in the Na/TiF4 protective layer. When paired with NaNi1/3Fe1/3Mn1/3O2 cathode in a pouch cell, it exhibits stability up to 2000 cycles at current densities of 2 C and 4 C, with a maximum energy density output of 483.1 Wh kg−1 (power density: 320.8 W kg−1).

Funder

China Postdoctoral Science Foundation

Natural Science Foundation of Jiangsu Province

Major Basic Research Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3