Polyamide Nanofilms through a Non‐Isothermal‐Controlled Interfacial Polymerization

Author:

Zhao Guang‐Jin1,Li Lu‐Lu2,Gao Hai‐Qi3,Zhao Zhi‐Jian2,Pang Zi‐Fan2,Pei Chun‐Lei2,Qu Zhou1,Dong Liang‐Liang4ORCID,Rao De‐Wei5,Caro Jürgen6,Meng Hong3

Affiliation:

1. College of Chemical Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China

2. School of Chemical Engineering and Technology Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 P. R. China

3. State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources Institution College of Chemistry Xinjiang University Xinjiang Urumqi 830017 P. R. China

4. Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 P. R. China

5. School of Materials Science and Engineering Jiangsu University Zhenjiang 212013 P. R. China

6. Institute of Physical Chemistry and Electrochemistry Leibniz Universität Hannover Callinstraße 3A 30167 Hannover Germany

Abstract

AbstractEfficient thin film composite polyamide (PA) membranes require optimization of interfacial polymerization (IP) process. However, it is challengeable owing to its ultrafast reaction rate coupled with mass and heat transfer, yielding heterogeneous PA membranes with low performance. Herein, a non‐isothermal‐controlled IP (NIIP) method is proposed to fabricate a highly permeable and selective PA membrane by engineering IP at the cryogenic aqueous phase (CAP) to achieve synchronous control of heat and mass transfer in the interfacial region. The CAP also enables the phase transition of the aqueous solution from the liquid to solid state, providing a more comprehensive understanding of the fundamental mechanisms involved in different phase states in the IP process. Consequently, the PA membrane exhibits excellent separation performance with ultrahigh water permeance (42.9 L m−2 h−1 bar−1) and antibiotic desalination efficiency (antibiotic/NaCl selectivity of 159.3). This study provides new insights for the in‐depth understanding of the precise mechanism linking IP to the performance of the targeting membrane.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3