Development of an Asymmetric Hydrophobic/Hydrophilic Ultrathin Graphene Oxide Membrane as Actuator and Conformable Patch for Heart Repair

Author:

Zhang Xingying12,Song Chen3,Nong Huijia1,Xu Kaige2,Wu Xiaozhuo2,Zhong Wen4,Xing Malcolm2ORCID,Wang Leyu1

Affiliation:

1. Biomaterials Research Center School of Biomedical Engineering Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering Southern Medical University Guangzhou Guangdong 510515 China

2. Department of Mechanical Engineering University of Manitoba Winnipeg MB R3T 2N2 Canada

3. Central Laboratory The Fifth Affiliated Hospital of Southern Medical University Southern Medical University Guangzhou Guangdong 510900 China

4. Department of Biosystems Engineering University of Manitoba Winnipeg MB R3T 2N2 Canada

Abstract

AbstractA conductive engineered cardiac patch (ECP) can reconstruct the biomimetic regenerative microenvironment of an infarcted myocardium. Direct ink writing (DIW) and 3D printing can produce an ECP with precisely controlled microarchitectures. However, developing a printed ECP with high conductivity and flexibility for gapless attachment to conform to epicardial geometry remains a challenge. Herein, an asymmetrical DIW hydrophobic/hydrophilic membrane using heat‐processed graphene oxide (GO) ink is developed. The “Masked spin coating” method is also developed that leads to a microscale GO (hydrophilic)/reduced GO (rGO, hydrophobic) physiological sensor, as well as a macroscale moisture‐driven GO/rGO actuator. Depositing mussel‐inspired polydopamine (PDA) coating on the one side of the DIW rGO , the ultrathin (approximately 500 nm) PDA‐rGO (hydrophilic)/rGO (hydrophobic) microlattice (DrGOM) ECP is bestowed with the flexibility and moisture‐responsive actuation that allows gapless attachment to the curved surface of the epicardium. Conformable DrGOM exhibits a promising therapeutic effect on rats' infarcted hearts through conductive microenvironment reconstruction and improved neovascularization.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3