Chiral Polymer‐Organic Molecule Composite with Circularly Polarized Thermally Activated Delayed Fluorescence and Room‐Temperature Phosphorescence by Bridging Effect of Hydrogen Bond

Author:

Chen Ruilian1,Feng Rui2,Huang Zhenjie1,Feng Dengchong1,Long YuBo1,Zhang Jiawen2,Yang Yuzhao23ORCID,Ma Zetong23,Yuan Zhongke23ORCID,Lu Shaolin23,Zhao Zujin4,Chen Xudong123

Affiliation:

1. Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education Guangdong Engineering Technology Research Center for High‐performance Organic and Polymer Photoelectric Functional Films School of Chemistry Sun Yat‐sen University Guangzhou 510275 P. R. China

2. School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 China

3. Guangdong Laboratory of Chemistry and Chemical Engineering Jieyang Center Jieyang 515200 China

4. State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China

Abstract

AbstractCircularly polarized luminescence is essential to chiral and photonic science, but achieving circularly polarized thermally activated delayed fluorescence (CP‐TADF) and circularly polarized room‐temperature phosphorescence (CP‐RTP) simultaneously remains a great challenge. This is because it is difficult to satisfy simultaneously the stable triplet exciton, appropriate energy gap, and the regular chiral environment. Herein, a simple strategy is reported to construct a persistent photoluminescent system, which can achieve TADF and RTP simultaneously by suppressing the non‐radiative transition decay of the triplet exciton through intermolecular hydrogen bonding between acridine flavin (AF) and rigid polymer network. The persistent photoluminescent composite exhibited ultra‐long lifetimes and high quantum yields. Then, a rarely multi‐circularly polarized photoluminescence system containing CP‐TADF and CP‐RTP is constructed by the co‐assembly of cellulose nanocrystals, polyvinyl alcohol, and AF. By utilizing the cholesteric structure, photonic band gap of chiral photonic crystals, and the stabilization mechanism of triplet exciton by intermolecular hydrogen bonding between the light emitter and rigid polymer, chiral photoluminescent films exhibited rare optical properties simultaneously: multi‐circularly polarized photoluminescence emission, high and tunable dissymmetric factor, significant quantum yield, and ultralong lifetimes, which are not reported before and broaden the perspective for multi‐circularly polarized luminescence.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3