Affiliation:
1. The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 China
2. Engineering Research Center of Knitting Technology Ministry of Education College of Textile Science and Engineering Jiangnan University Wuxi 214122 China
Abstract
AbstractThe cracks in flexible triboelectric nanogenerators (TENG) cannot naturally repair themselves during low‐temperature operation, which significantly restricts their practical applications. Yet, the development of elastomers capable of self‐repair at low temperatures has remained a formidable challenge. In this study, a dual dynamic cross‐linking network using multiple hydrogen bonds and β‐hydroxy esters is constructed to fabricate a fully bio‐based elastomer known as PLMBE. This elastomer can be stretched up to an impressive 1200% of its original length and possesses a remarkable autonomous self‐healing capability even under harsh conditions, including low temperatures (−10 °C, 12 h, with a 75% efficiency rate) and exposure to supercooled, high‐concentration saline (10% NaCl solution at −10 °C, 12 h, with a 64% efficiency rate). These remarkable properties are attributed to the elastomer's low glass transition temperature (Tg) of −30 °C and the abundance of hydrogen‐bonded supramolecular interactions. Importantly, this elastomer is highly suitable as a triboelectric layer for creating bio‐based TENG (Bio‐TENG) . These results demonstrate that Bio‐TENG can achieve an impressive output power density of 2.4 W m−2, and the output voltage recovers up to 95% after self‐healing at −10 °C. Consequently, these bio‐based elastomers have promising applications in various fields, including energy storage devices.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献