Photoluminescence Probes Ion Insertion into Amorphous and Crystalline Regions of Organic Mixed Conductors

Author:

Collins Garrett W.1,Lone Mohd Sajid1,Jackson Seth R.1,Keller Jolene N.1,Kingsford Rand L.1,Noriega Rodrigo1,Bischak Connor G.1ORCID

Affiliation:

1. Department of Chemistry University of Utah Salt Lake City UT 84112 USA

Abstract

AbstractOrganic mixed ionic‐electronic conductors (OMIECs) have emerged as promising materials for a wide range of next‐generation technologies, including bioelectronics and neuromorphic computing. The performance of these materials depends on the transport of ions through the polycrystalline polymer matrix as well as how the distribution of ions and polarons in crystalline and amorphous regions impacts electronic transport. However, it is often challenging to distinguish whether ions enter crystalline or amorphous regions. In this work, steady‐state and time‐resolved photoluminescence (PL) spectroelectrochemistry is used to probe initial ion insertion in crystalline and amorphous regions of the OMIEC material poly(3‐[2‐[2‐(2‐methoxyethoxy)ethoxy]ethyl]thiophene ‐2,5‐diyl) (P3MEEET) as a function of applied voltage. It is found that PL spectroelectrochemistry reports on the initial stages of electrochemical doping through the quenching of PL emission. By distinguishing between amorphous and crystalline contributions to the PL spectrum, ion insertion in crystalline and amorphous regions as a function of voltage is tracked. It is found that PL spectroelectrochemistry is much more sensitive to the initial injection of ions than complementary methods, highlighting its potential as a sensitive tool for interrogating ion injection in OMIECs.

Funder

National Science Foundation

Office of Science

Basic Energy Sciences

U.S. Department of Energy

Directorate for Mathematical and Physical Sciences

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3