Affiliation:
1. Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon‐Based Functional Materials & Devices Soochow University 199 Ren'ai Road Suzhou Jiangsu 215123 P. R. China
2. Macao Institute of Materials Science and Engineering Macau University of Science and Technology Taipa Macau SAR 999078 P. R. China
Abstract
AbstractOrganic single crystals with near‐infrared (NIR) emission demonstrate their excellent optical communications from well photonic confinement and low optical waveguide loss, which are considered as competitive candidates toward advanced optoelectronics. However, the increasingly diverse and sophisticated application demands result in the complicated design of NIR devices, which is hardly realized solely by the intrinsic properties of individual crystals. Herein, a programmable assembly strategy is presented to fabricate organic heterostructures. Triphenylene (TP), pyrene (Py) and 7,7,8,8‐tetracyanoquinodimethane (TCNQ) are primary selected to prepared organic cocrystals with narrow band gap and near‐infrared emission. Importantly, the charge‐transfer alloy with tunable emission from 700 nm to 850 nm and branched heterostructures with multichannel characteristics are prepared from these organic cocrystals by following the growth kinetics process at molecular level and lattice matching principle at structural level, respectively. Theses prepared heterostructures exhibit optical logic operation capabilities, which can serve as optical modulators. This work provides new insights into the manufacturing of organic NIR heterostructures applied in advanced optoelectronics.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Science and Technology Support Program of Jiangsu Province
Collaborative Innovation Center of Suzhou Nano Science and Technology
Suzhou Key Laboratory of Functional Nano and Soft Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献