Switching Dynamics in Anti‐Ferroelectric Transistor for Multimodal Reservoir Computing

Author:

Shi Yufei1,Duong Ngoc Thanh1,Chien Yu‐Chieh1,Li Sifan1,Xiang Heng1,Zheng Haofei1,Ang Kah‐Wee1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering National University of Singapore 4 Engineering Drive 3 Singapore 117583 Singapore

Abstract

AbstractSpatial‐temporal time series analysis and forecasting are crucial for understanding dynamic systems and making informed decisions. Recurrent neural networks (RNNs) have paved the way for reservoir computing (RC), a method enabling effective temporal information processing at low training costs. While software‐based RC performs well, physical RC systems face challenges like slow processing speed and limited state richness, leading to high hardware costs. This study introduces an innovative approach, i.e., the antiferroelectric field effect transistor‐based RC (AFeFET‐based RC) system for efficient temporal data processing. By exploiting the fading memory property inherent in hafnium oxide‐based antiferroelectric material, this system demonstrates promise for physical RC implementation. Moreover, it leverages the light sensitivity of 2D molybdenum disulfide (MoS2) channels for controllable temporal dynamics under electrical and optical stimuli. This dual‐mode modulation significantly enriches the reservoir state, boosting overall system performance. Experimental tests on standard benchmarking tasks using the AFeFET‐based RC system yielded impressive accuracy results (95.4%) in spoken‐digit recognition and a remarkable normalized root mean square error (NRMSE) of 0.015 in Mackey–Glass time series prediction.

Funder

National Research Foundation Singapore

Science and Engineering Research Council

Publisher

Wiley

Reference51 articles.

1. R.Pascanu T.Mikolov Y.Bengio inProc. of the 30th International Conference on Machine Learning PMLR London 2013 p.1310.

2. Neural networks and physical systems with emergent collective computational abilities.

3. A. H.Ribeiro K.Tiels L. A.Aguirre T.Schön inProc. of the Twenty Third International Conference on Artificial Intelligence and Statistics PMLR London 2020 p.2370.

4. Reservoir computing approaches to recurrent neural network training

5. Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3