Functional‐Nanochannel‐Based Artificial Postsynaptic Membrane for Neural Signal Transduction

Author:

Wang Senyao123ORCID,Zhang Wenyuan2,Wu Minghui2,Wu Yitian2,Xu Guoheng2,Liu Wenchao2,Mei Tingting2,Chen Lu1,Xiao Kai2ORCID

Affiliation:

1. School of Materials and Environmental Engineering Shenzhen Polytechnic University Shenzhen 518055 P. R. China

2. Department of Biomedical Engineering Guangdong Provincial Key Laboratory of Advanced Biomaterials Institute of Innovative Materials Southern University of Science and Technology Shenzhen 518055 P. R. China

3. Munich Institute of Biomedical Engineering Department of Electrical Engineering TUM School of Computation, Information and Technology Technical University of Munich Hans‐Piloty‐Str. 1 85748 Garching Germany

Abstract

AbstractBiological‐machine interface (BMI) devices represent a significant step toward adaptive and cognitive technologies. However, current BMI devices emphasize the analysis of electrophysiology and often overlook the chemical information of neurotransmitters in the process of signaling between neurons. To bridge this gap, a light‐gated artificial postsynaptic membrane (APM) is introduced, capable of reading dopamine (DA) released from rat pheochromocytoma cells and regulate neural signal transmission. Like the biological postsynaptic membrane, the APM is a porous membrane functionalized by DA‐specific aptamers and azobenzene (Azo) molecules in different regions. Azo molecules act as a light‐responsive trigger that controls DA release, while DA‐specific aptamers capture DA, which converts its concentration information into an ionic current signal. By light‐enhanced responses to DA exocytosis from rat pheochromocytoma (PC12) cells, the APM confirms its ability to communicate with biological systems, which lays the foundation for developing biological‐machine interaction systems with more advanced functionalities.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3