Revolutionizing CO2‐to‐C2 Conversion: Unleashing the Potential of CeO2 Nanocores for Self‐ Supported Electrocatalysts with Cu2O Nanoflakes on 3D Graphene Aerogel

Author:

Yap Feng Ming12,Loh Jian Yiing12,Yuan Shaoyu3,Zeng Xianhai3,Ong Wee‐Jun12456ORCID

Affiliation:

1. School of Energy and Chemical Engineering Xiamen University Malaysia Sepang Selangor Darul Ehsan 43900 Malaysia

2. Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT) Xiamen University Malaysia Sepang Selangor Darul Ehsan 43900 Malaysia

3. College of Energy State Key Laboratory of Physical Chemistry of Solid Surfaces Xiamen University Xiamen 361102 China

4. State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China

5. Gulei Innovation Institute Xiamen University Zhangzhou 363200 China

6. Shenzhen Research Institute of Xiamen University Shenzhen 518057 China

Abstract

AbstractCu serves as a promising electrocatalyst for converting CO2 into valuable C2 products in CO2 reduction reactions (CO2RR). However, instability in CO* formation is crucial for CO2 adsorption‐ desorption still remains a challenge under reduction conditions. This study explores the impact of lanthanide oxide, particularly CeO2, on Cu‐based catalytic performances. By leveraging Ce's distinctive electronic structure, CO* species are stabilized during the reaction in CeO2─Cu2O, resulting in exceptional catalytic performance for CO2 electroreduction to C2 products. Hybridizing CeO2‐Cu2O with graphene aerogel enhances electrochemical active surface area and CO2RR efficiency. The resulting CeO2─Cu2O(10%)/GA electrocatalyst exhibits a remarkable faradaic efficiency for C2 products, exceeding 62%, alongside exceptional stability over 80 h with wide potential window (−0.8 to −1.2 V) using a H‐cell. Systematic investigations elucidate the intricate interplay between surface properties and catalytic activity. Furthermore, a solar cell‐ powered CO2 reduction system demonstrates consistent performance (−27.8 mA cm2 at 3.46 V) under solar radiation of ≈100 mW cm2, showcasing outstanding stability with nearly 100% retention over 4 h of continuous illumination. In short, by harnessing catalytic and electronic effects, this innovation advances the development of electrocatalysts with heightened CO2‐to‐C2 selectivity, bridging fundamental research with technological innovation to tackle critical global challenges.

Funder

National Natural Science Foundation of China

Basic and Applied Basic Research Foundation of Guangdong Province

State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3